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Goal(s) for Today

1. Reuvisit the logic of (infinity) random sampling from a known population.
2. Introduce students to the so-called “confidence” interval.

3. Reiterate what sample inference to a population actually is.




A Brief Aside

Today is going to be "hypothesis testing” vis-a-vis a sample and the population.

e e whatis the probability of the sample statistic, given the population parameter?

What it's not, but you should know anyway: framing hypotheses from your theories.




What is a Hypothesis (by Way of Theory)?

Hypotheses are testable statements about a relationship between an independent variable

and a dependent variable.

e Dependent variable: the thing you want to explain.

e [Independent variable: the thing you believe explains variation in the dependent variable.




What Should Hypotheses Say?

Hypotheses must communicate the following:

1. Aclear identification of proposed cause and effect

2. The proposed relationship expected between both variables

3. The unit of analysis

4. An unambiguous indication of the type of measurement in both variables.




Types of Proposed Relationships

Negative Positive Lero Curvilinear

/" \




Making Guesses About the Population

Let's revisit the previous case we used (inspired by American attitudes re: Trump).

e \We have a hypothetical politician who is more despised than revered.
e Population (n = 250,000) is evaluating the politician with a thermometer rating [0:100]
e \We, the gods creating Population, assign known population parameters.

We want to make guesses about Population based on samples of Population.




Creating the Data

Let's revisit the data we created.

# rbnorm() from {stevemisc}
Population <- rbnorm(250000, mean = 42.42, sd = 38.84,

lowerbound = O,
upperbound = 100,
round = TRUE,

seed = 8675309) # Jenny, I got your number...
And the summary statistics.

mean (Population)

#> [1] 42.45977

sd (Population)

#> [1] 38.88818

# ~ these are the gospel truth about Population




Number of Observations in Bin

The Distribution of Thermometer Ratings from our Population

These data i the shape and distribution of real-world ratings of divisive public officials.
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Vertical line communicates the mean of the popuation.




Central Limit Theorem

Central limit theorem says:

e with an infinite number samples of size n...
e from a population of N units...

e the sample means will be normally distributed.

Corollary findings:

e The mean of sample means would equal fs.

e Random sampling error would equal the standard error of the sample mean (

El

—).




R Code

set.seed(8675309) # Jenny, I got your number...
# Note {dqrng} offers much faster sampling at scale
# This ts the dgsample() function
Popsamples <- tibble(
samplemean=sapply(1:1000000,
function(i){ x <- mean(
dgsample (Population, 10,
replace = FALSE))
19))




The Distribution of 1,000,000 Sample Means, Each of Size 10

Notice the distribution is normal and the mean of sample means converges on the known population mean (vertical line).
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Standardization

A raw normal distribution | presented is somewhat uninformative.

e Standardization will make it useful.

Deviation from the mean
z = - (M
Standard unit

The standard unit will vary, contingent on what you want.

e [f you're working with just one random sample, it's the standard deviation.
e [f you're comparing sample means across multiple random samples, it's the standard

error.




Standardization

Larger z values indicate greater difference from the mean.

e \When z =0, there is no deviation from the mean (obviously).

Standardization allows for a better summary of a normal distribution.




Density

The Area Underneath a Normal Distribution

The tails extend to infinity and are asymptote to zero, but the full domain sums to 1. 95% of all possible values are within about 1.96 standard units from the mean.
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The Distribution of 1,000,000 Sample Means, Each of Size 10

Notice the distribution is normal and the mean of sample means converges on the known population mean (vertical line).
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Inference Using the Normal Distribution

What's the next step? Assume this scenario for illustration.

e \We as researchers have a sample of 100 people from this population.

set.seed(8675309)
oursample <- sample(Population, 100, replace = FALSE)
mean (oursample)

#> [1] 43.64

e We as researchers don't know g (though it's 42.46).
e \We assume we know o (38.89), a bit unrealistic, but alas...
o We have annof 100 and T of 43.64.

We want to make a statement about the location of the population mean.




Inference Using the Normal Distribution

Our best guess of the population parameter from the sample is the sample statistic.

e We have to account for the noise introduced by random sampling.
e However, we'll never truly "know” the population parameter.

A 95-percent confidence interval can be informative.

e |t's the interval in which 95% of all possible sample estimates will fall by chance.
e We operationalize this as T =+ (1.96)*(standard error).




Inference Using the Normal Distribution

How we apply this for our problem.

e \We have our 7.
e We have our n and assume a known o.

e Standard error = 3.889 (ﬁ = ?\’;‘% = 3.88)




Inference Using the Normal Distribution

We can get our upper/lower bounds of a 95-percent confidence interval.

Lower bound = T — (1.96) * (s.e.)

Upper bound = Z + (1.96) * (s.e.)




A Brief Aside...

If we're going to do inference the wrong way, we should at least get the z-values right.

# p_z() is in {stevemisc}

p_z(.32) # this is not 1

#> [1] 0.9944579

p_z(.10) # this is not 1.645

#> [1] 1.64485)

p_z(.05) # this is not 1.96

#> [1] 1.959964

p_z(.01) # this is not 2.58

#> [1] 2.575829

p_z(0) # okay, that's still infinity
#> [1] Inf




R Code

#computation of the standard error of the mean

sem <- sd(Population)/sqrt(length(oursample))

#957 confidence intervals of the mean

c(mean(oursample) - 1.96%sem, mean(oursample) + 1.96%sem)
#> [1] 36.01792 51.26208




Inference Using the Normal Distribution

We discuss this interval as follows.

e |f we took 100 samples of n =100, 95 of those random samples on average would have

sample means between 36.02 and 51.26.

We're not saying, for the moment, the true population mean is between those two values. We

don't necessarily know that.

e However, even this process gives us some nice properties.




An lllustration of Inference

Assume we have a politician’s supporter who is suspicious of our .

e They claims it has to be much higher. Say: 56.61.
e Rationale: this is the percentage of the vote Trump got in the precinct where | lived during
the 2020 election.
e In other words, they are basically inferring by anecdote or making hasty generalizations from

his/her surroundings.

So what can we do about this claim?




An lllustration of Inference

This is a probabilistic question!

e ie. What was the probability of T = 43.64 if ;4 = 56.61?

We can answer this by reference to z values.




R Code

(mean (oursample) - 56.61)/sem
#> [1] -3.335204




Find the zValue

STANDARD NORMAL DISTRIBUTION: Table Values Represent AREA to the LEFT of the Z score.

Z .00 01 02 .03 04 .05 .06 07 .08 09
-3.9 00005 00005 .00004 00004 .00004 .00004 00004 00004 .00003 .00003
-3.8 00007 00007 00007 00006 00006 .00006 00006 00005 00005 00005
-3.7 00011 00010 00010 00010 00009 00009 00008 00008 00008 00008
-3.6 | 00016 00015 00015 00014 00014 00013 00013 00012 00012 .00011
-3.5 | .00023 .00022 .00022 .00021 .00020 .00019 00019 .00018 .00017 .00017
-3.4 | 00034 .00032 .00031 00030 00029 .00028 .00027 00026 00025 00024
-3.3 00048 00047 00045 00043 00042 00040 00039 00038 00036 00035
-3.2 00069 00066 00064 00062 00060 00058 00056 00054 00052 00050
-3.1 00097 00094 00090 00087 00084 .00082 00079 00076 00074 00071
-3.0 | 00135 .00131 00126 00122 00118 00114 00111 00107 .00104 .00100
-2.9 00187 00181 00175 00169 00164 00159 00154 00149 00144 00139
-2.8 | .00256 .00248 00240 100233 100226 00219 00212 00205 00199 00193
-2.7 00347 .00336 00326 00317 00307 .00298 .00289 00280 .00272 00264
-2.6 00466 00453 00440 00427 00415 00402 00391 00379 00368 00357
-2.5 00621 00604 00587 00570 00554 00539 00523 00508 00494 00480
-2.4 00820 .00798 00776 00755 00734 00714 00695 00676 .00657 00639
-2.3 01072 01044 01017 00990 00964 00939 00914 00889 .00866 00842

Figure 1: Find the z value




orinR

# one-tailed (i.e. I'm assuming the direction)

pnorm(abs ((mean(oursample) - 56.61)/sem), lower.tail=FALSE)

#> [1] 0.0004261848

# two-tailed (i.e. I don't know the direction)

# Notice there really isn't much happening in this distinction

# "two-tail" is a sort of default, but it's kind of silly that it is.
2+pnorm(abs ((mean (oursample) - 56.61)/sem), lower.tail=FALSE)

#> [1] 0.0008523696




An lllustration of Inference

What is the probability that a random sample would produce a z value of -3.3352?

e Answer: 0.00043

In other words: if ;t were 56.61, we'd observe that @ only about 4 times in 10,000 trials, on

average.

e This is highly improbable.




An lllustration of Inference

What do we conclude?

e We suggest this hypothetical supporter is likely wrong in their assertion.
e \We offer that our sample mean is closer to what p really is.

Since we've been playing god this whole time, we incidentally know that's true.

e However, this procedure doesn't necessarily tell you what g is.

e |t's communicating what you think it's highly unlikely to be.




What About the Known Population Mean?

How likely was our T of 43.64 given the p of 42.46? Same process.

(mean(oursample) - mean(Population))/sem

#> [1] 0.3034927

# One tail (i.e. I'm assuming the direction)

pnorm(abs ((mean (oursample) - mean(Population))/sem),
lower.tail=FALSE)

#> [1] 0.3807572

# Two tail (i.e. I'm agnostic about the direction)

2xpnorm(abs ((mean (oursample) - mean(Population))/sem),
lower.tail=FALSE)

#> [1] 0.7615144

The probability of our sample mean, given the population mean (that we know), is 0.38.

e This is a likely outcome.
e \We cannot rule out the population mean from our random sample like we could with the

hypothetical mean of 56.61.




Some Derivations

We assumed we knew o, if not p. What if we don't know either?

e Use the sample standard deviation (s) instead.

e Do the same process with a Student'’s t-distribution.

e This is almost identical to a normal distribution, but with fatter tails for fewer degrees of
freedom.

e Degrees of freedom = n - k (i.e. number of observations - number of parameters [here: 1])

Uncertainty increases with fewer degrees of freedom.




Student’s t-distribution

Table of Probabilities for Student’s t-Distribution

df 0.600 0.700 0.800 .900 0.950 0.975 0.990 0.995
1 0.325 0727 1.37 078 4 12.706 31821 63657
2 0.289 0617 1.06 886 0 303 6.965 5
3 0.277 0584 0.97 638 3 182 4541 1
4 0271 0569 094 533 2 776 3747 4
5 0.267 0559 0.921 476 5 571 3365 32
6 0265 0553 0.906 440 1943 2447 3143 3707
7 0263 05 0896 415 895 | 2365 | 2998 | 3499
8 0.262 05 0.889 397 0 301 89 55
9 0261 05. 0.883 383 3 26! 82 50
10 0.260 05 0879 372 2 22 76 69
" 0.260 05 0876 363 0 71 06
12 0.259 0539 0873 356 7i 7 68 55
13 0.259 0538 0.870 350 7 6 2 65( 012
14 0.258 0537 0.868 345 76 45 2624 977
15 0.258 0536 0.866 341 75 31 2602 947
16 0258 0535 0865 337 1746 2120 2583 2921
17 0257 0 0.863 33 7. 11 567 | 2898
18 0257 0 0.862 30 7 1 55: 7
19 0257 0 0861 28 7. 0 53
20 0.257 0. 0.86 5 . .0 .52
21 0.257 0. 0.85¢ 7. 0 51
22 0.256 05 0.85i 3. 7 0 50
23 0.256 05 0.85¢ 3 7 06! 50
24 0.256 05 0.85 3 7 06. 2492 97
25 0.256 05 0.856 3 7 06 2485 787
26 0.256 05 0.856 3 70 056 2479 779
27 0256 0531 0855 314 1.703 2052 2473 2771
28 0256 0530 0855 313 701 0 7 763
29 0256 0530 0.85: 311 699 0 2 756
30 0.256 0530 0.85. 310 697 0 7 750
40 0.255 0529 0.85 303 684 0: 3 704
60 0.254 0527 0.84 296 671 [1] 0 660
120 0.254 0526 0.84! 289 658 980 358 617

df (degrees of freedom) = number of samples - 1
1-alpha (for one tail) or 1 - alpha/2 (for two tails)

©Copyright Lean Sigma Corporation 2013

Figure 2: Student's t-distribution




orinR

# proposed mean

(mean(oursample) - 56.61)/
(sd(oursample)/sqrt(100)) -> tstatl

# actual mean

(mean (oursample) - mean(Population))/
(sd(oursample)/sqrt(100)) -> tstat2

# probability of what we got, if the politician's supporter is right
pt(-abs(tstatl), df = 100-1) # one tail

#> [1] 0.0006489941

2*pt (-abs(tstatl), df = 100-1) # two tail

#> [1] 0.001297988

# probability of what we got, knowing what the population mean s
pt(-abs(tstat2), df = 100-1) # one tail

#> [1] 0.3819116

2*pt (-abs(tstat2), df = 100-1) # two tail

#> [1] 0.7638231




Conclusion: The Process of Inference

Notice the process of inference.

1. Assume the hypothetical mean to be correct (as a hypothesis, if you will).
2. Test the claim about the hypothetical mean based on a random sample.

3. Infer about the claim of the population mean using probabilistic inference.

Does that look familiar? It's p(Z| ).

e Notice what it's not? p(p|z).
e That's not the question you're asking but it's the answer you're getting.




Conclusion: The Process of Inference

We will never know L.

e But this process gives an indirect answer to the question you're asking.
e WVithin a desired confidence interval: “l can't rule these out.”
e Outside a desired confidence interval: “what | got is highly unlikely if what you're

proposing were actually true, given what we know from central limit theorem.”

Still: you'll learn more about what g can be by assessing what it's highly unlikely to be.
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